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Fractal and multifractal properties of exit times and Poincaré recurrences

V. Afraimovich1 and G. M. Zaslavsky2,3
1National Tsing Hua University, Department of Mathematics, Hsinchu, Taiwan 30043, Republic of China

2Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012
3Department of Physics, New York University, 2-4 Washington Place, New York, New York 10003

~Received 25 November 1996!

Systems with chaotic dynamics possess anomalous statistical properties, and their trajectories do not corre-
spond to the Gaussian process. This property imposes description of such time characteristics as the distribu-
tion of exit times or Poincare´ recurrences by introducing a~multi-! fractal time scale in order to satisfy the
observed powerlike tails of the distributions. We introduce a corresponding phase-space-time partitioning and
spectral function for dimensions, and make a connection between dimensions and transport exponent that
defines the anomalous~‘‘strange’’! kinetics.@S1063-651X~97!15405-8#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

After a set of pioneering publications@1–4#, fractal and
multifractal analyses of the dynamical systems became
tine methods for the diagnostics of chaos. A rigorous defi
tion of fractals, or more accurately, a dimensionlike char
teristics, was considered in@5#, where the so-called Pesin’
dimension was introduced as a generalization of the Car´-
odory dimension@6#. Later it was shown in@7,8# that the
intuitively introduced multifractal description of dimensio
properties and the famousf (a) spectrum for dimensions ca
also be defined in a rigorous way.

The peculiarity of~multi-! fractal analysis of dynamica
systems, as compared to static geometric objects, is that
exists a theoretical possibility to obtain all necessary inf
mation from a single trajectory. In fact, one would like
explain the~multi-! fractal properties of a trajectory that fill
the phase space and has a very complicated distributio
the occupation time for different phase space domains. Th
are many fractal objects in the phase space of a chaotic
tem. Let us mention only such objects as cantori and islan
around-islands~see review@9#!. Recently the kinetics of
Hamiltonian chaotic systems has been considered to be
tal in space and time simultaneously. The popular notion
fractals@10# can be extended, and a fractal time introduc
for the random processes of Le´vy-type applied to different
kinds of systems@11–13#.

For Hamiltonian systems with chaotic dynamics, the m
tion is not ergodic in the full phase space, and one need
extract a~multi! fractal set of islands to obtain a domain wi
ergodic trajectories. The islands are a singular part of
phase space. The behavior of the trajectories near an is
boundary layer was studied in@14–18# as a fractal object
which imposes powerwise distributions in the large time
ymptotics of chaotic kinetics. More specifically, the isla
boundary is sticky, the subisland boundary is more stic
and so on. As a result of the situation described, fra
space-time properties of the trajectories were considered
encounter a situation in which~i! fractal properties exist si
multaneously in space and time, and~ii ! the multiplicity of
the resonance sets that generate islands is adequate to a
551063-651X/97/55~5!/5418~9!/$10.00
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tifractal construction of the trajectories rather than to a fr
tal one.

A description of the multifractal time and the correspon
ing spectral function of dimensions is the subject of th
work. For a general situation of chaotic dynamics, the frac
time cannot be introduced without considering a space st
ture. For that reason, the space-time coupling is nontriv
and so is the spectral function of the fractal indices. In Sec
we briefly describe the necessary characteristics of
Hamiltonian chaotic dynamics, with a particular emphasis
the Poincare´ recurrences and exit time distributions. In Se
III we consider fractal space-time structures, and in Sec.
multifractal ones.

II. SCALING PROPERTIES OF TRAJECTORIES
AND ASYMPTOTIC DYNAMICS

Distribution function for trajectories in phase space can
fairly uniform, as happened, for example, in the ‘‘Arno
cat’’ system. Nevertheless, a typical Hamiltonian system
a rich set of islands in phase space, with a regular dynam
inside the islands and with narrow stochastic layers isola
from the main stochastic sea domain. As an example,
can consider the web map

ū5v, v̄52u2K sinv ~2.1!

or the standard map

p̄5p2K sinx, x̄5x1 p̄, ~2.2!

with a fairly well known island structure which will be dis
cussed more below. The dynamics near the islands boun
is singular due to the phenomena of stickiness, and it
dominate in the large time asymptotics. This circumstan
influences almost all important probability distributions su
as the distribution of distances, exit times, recurrences,
ments, etc. The main feature of all such distributions is t
they do not correspond to either Gaussian or Poissonian~or
similar! processes with all finite moments. This is due to t
presence of powerlike tails in the asymptotical limits of lar
space-time scales.
5418 © 1997 The American Physical Society
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55 5419FRACTAL AND MULTIFRACTAL PROPERTIES OF EXIT . . .
Being more specific, one can say that power-wise ta
distributions are a consequence of a~multi-! fractal singular
scattering zone near the island boundaries. More precis
there are different sets of islands with different asympto
~different powers of distribution tails! and different scales fo
where and when the asymptotics work. Different interme
ate asymptotics is a crucial characteristic of the anoma
transport, as was mentioned in the problem of advec
@19#, and the problem of charged particle motion in an el
tromagnetic field@20#. This is the basis for introducing
multifractal description of some distributions in chaotic d
namics.

As an example, let us consider an elementDG of the finite
phase volumeG in which the full area of stochastic motio
~stochastic sea! is located. The system is Hamiltonian an
the dynamics is area preserving. Introduce a set of time
stants$t j% when a trajectory crosses the boundary ofDG on
the way from insideDG to outside. The intervals

t j5$t j112t j%, j50,1,... ~2.3!

are Poincare´ cycles. Their distributionP(t,DG) can be nor-
malized as

1

DG E
0

`

P~t;DG!dt51, ~2.4!

and the limit

P~t!5 lim
DG→0

P~t;DG!/DG ~2.5!

exists if there exists ergodicity@21# and phase space com
pactness. Moreover, if the measure of the chaotic orbit
nonzero, then

^t&[t0,`, ~2.6!

i.e., the mean recurrence time is finite@21# ~see also@22#!.
Using the results of@21# and the expansion form@22# it is
possible to show@23# that in the asymptotic formula

P~t!;t2g, t→` ~2.7!

there exists a restriction

g.2. ~2.8!

The chaotic dynamics can be considered as a normal
if the Poissonian distribution

P~t!5
1

^t&
exp~2t/^t&! ~2.9!

or any similar distribution with all finite moments is valid
Such a situation was described in@24–27#.

It was mentioned in@26# that the anomalous behavio
~2.7! correlates with the anomalous transport situation wh
the moments of the displacementR(t) satisfy the asymptotic
equation

^R2n~ t !&;tmn, t→`, ~2.10!
d
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with the transport exponentmÞ1. It is worthwhile to men-
tion the results for the anomalous statistical properties
their correlation with either the Poincare´ recurrences or es
cape time distributions for the standard map@28–31# and for
the Lorenz gas~Sinai billiard! with infinite horizon@32–37#.
In @17,18# and @38#, different approaches were proposed
consider Poincare´ recurrences by introducing a dimensio
like characteristic or, in other words, by using a fractal d
scription of the recurrence times as a random set~2.3!. Par-
ticularly, it was found in@18# that there exists a connectio
between the recurrence times exponentg in Eq. ~2.7! and the
transport exponentm in Eq. ~2.10!, namely,

g521m, ~2.11!

which is inferred by a specific phase space topology of m
~2.1! and ~2.2!. Connection~2.11! was confirmed by high
accuracy simulation in@17,18,39#. These results encourage
us to consider the fractal structure of islands in the ph
space as a seed of fractal and multifractal structures of re
rence times. We can add to the consideration distribution
the escape times from different boundary layer zones@17,18#
by introducing a time delay distribution. Letc(t;DG) be the
probability density to escape fromDG during the time inter-
val (t,t1dt). Then the probability to escape fromDG for the
time not less thant is

Pe~ t;DG!5E
0

t

dt c~t;DG!. ~2.12!

The corresponding survivial probability for the timet is

C~ t;DG!512Pe~ t;DG!512E
0

t

dt c~t;DG!,

~2.13!

with the normalization condition

Pe~ t→`;DG!51. ~2.14!

The mean time of trapping to the domainDG is

ts~DG!5E
0

`

dt tc~t;DG!. ~2.15!

In the case where there is only one ‘‘leading’’ exponent
Eq. ~2.7!, we can assume that the same has happened
the escape distribution functionc(t;DG) i.e.,

c~t;DG!;t2g, ~2.16!

and then, in correspondence with Eq.~2.11! and the condi-
tion m.0, we obtain restriction~2.8!. The one-exponent~or
fractal! situation is not sufficient to describe a typical situ
tion, and in the following sections we reconsider it using
more solid basis.

III. FRACTAL SPACE-TIME PARTITIONING

Consider the space-time partitioning that was introduc
in @15# ~see also@18#! and resembles the Sierpinsky carp
~Fig. 1!. Let the central square be an island of zero gene
tion. Surround the island by an annulus which represents
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boundary island layer. It consists ofg1 ~g158 in Fig. 1!
subislands of the first generation~dashed small islands in
Fig. 1!. We can partition the annulus byg1 domains, so that
each of them includes exactly one island of the first gene
tion; then we surround each of the first generation islands
an annulus of the second generation and repeat the pro
On thenth step the structure can be described by a ‘‘wor

wn5w~g1 ,g2 ,...,gn!. ~3.1!

The full number of islands on thenth step is

Nn5g1 ,...,gn , ~3.2!

and any island from thenth generation can be labeled by

ui
~n!5u~ i 1 ,i 2 ,...,i n!, 1< i j<gj , ; j . ~3.3!

Let us now introduce the time that a particle spends in
boundary layer of an island. This time,

Ti
~n!5T~ui

~n!!, ~3.4!

carries all information of thenth generation islands~3.1!–
~3.3!. By introducing a residence time for each island boun
ary layer, we have a situation comparing to the plain S
pinsky carpet or plain fractal situation because of
nontriviality of the space-time coupling. In fact, we are a
taching an additional parameter responsible for the temp
behavior to the simple geometric construction which is sim
lar to a Cantor set.

A simplified situation corresponds to the exact se
similarity of the construction described above, i.e.,

Si
~n!5S~n!5lS

nS~0!, ; i ,

Ti
~n!5T~n!5lT

nT~0!, ; i , ~3.5!

FIG. 1. Scheme of the phase space for islands surrounde
subislands.
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whereSi
(n) is area of an islandui

(n) andTi
(n) is introduced in

Eq. ~3.4!. Expressions in Eq.~3.5! correspond to equal area
and residence times for all islands of the same generat
Two scaling parameterslS andlT represent the existence o
the exact self-similarity in space and time corresponding
Precisely such a situation was described in@15–18# for maps
~2.1! and ~2.2!, with

lS,1, lT.1. ~3.6!

In addition to Eq.~3.5!, there is a self-similarity in the is-
lands’ proliferation, i.e.,

gn5lg
ng0 , lg>3 ~3.7!

It follows from Eqs.~3.2! and ~3.7! that

Nn5lg
ng05lg

n ~3.8!

if we start from the only island (g051). It is useful to in-
troduce a ‘‘residence frequency’’

v i
~n!51/Ti

~n! ~3.9!

with the self-similarity property

v i
~n!5v~n!5lT

2nv~0!. ~3.10!

Consider now a partitioning which corresponds to con
tions ~3.1!–~3.4! with the simplification~3.7!. Thenth level
of the partitioning corresponds to thenth level of the islands’
hierarchy, i.e., each space bin has an areaSi

(n) and a cojoint
residence timeTi

(n) @both are defined in Eq.~3.5!# whose
sizes do not depend oni . The elementary probability for a
bin to spend timeTi

(n) in the domainSi
(n) can be presented in

a simple form

Pi
~n![Pi1 ,i2 ,...,i n

5Cnv i
~n!Si

~n! , ;1< i j<g, ~3.11!

whereCn is a normalization constant. Let us callPi
(n) an

elementary bin probability. Using Eqs.~3.5!, ~3.6!, and~3.9!,
we can rewrite Eq.~3.11! as

Pi
~n!5Cn~lS /lT!n, ; i . ~3.12!

With expression~3.12!, we can consider different sum
and partition functions. As an example, consider the sum

(
i1 ,...,i n

Pi
~n!5Cn (

i1 ,...,i n
exp@2n~ u lnlSu1 lnlT!#

5 (
i1 ,...,i n

exp@2n~ u lnlSu1 lnlT!1ncn#51,

~3.13!

where the ‘‘free energy’’ density

cn5
1

n
lnCn . ~3.14!

is introduced. The number of terms in Eq.~3.13! follows
from Eq. ~3.8!, and therefore in the limitn→` we obtain

by
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lim
n→`

cn5c5u lnlSu1 lnlT2 lnlg . ~3.15!

A more precise formulation of result~3.15! is that the sum in
Eq. ~3.13! diverges ifcn.c, converges to zero ifcn,c,
and converges to 1 ifcn5c.

IV. MULTIFRACTAL SPACE-TIME
AND ITS DIMENSION SPECTRUM

It was mentioned in Secs. I and II that chaotic dynami
systems with rich sets of islands have a multifractal struct
rather than fractal space-time structure. Our purpose no
to introduce a spectral function of dimensions in analogy
@1–4#.

Following a usual method of statistical mechanics, let
introduce a partition function in the form

Zdiscr
~n! $lT ,lS ;q%5 (

i1 ,i2 ,...,i n
~v i

~n!Si
~n!!gq. ~4.1!

Here we use the space-time bin probabilityv i
(n)Si

(n) intro-
duced in Eq.~3.11!. Considering a multiscaling situation, w
assume that a real elementary probability to occupy a
should have the same scaling dependence as in Eq.~3.11! up
to a power ofg, and that there are different values ofg in the
sum. With an exponentq we can consider different momen
of the elementary bin probability. In particular, forq50, we
simply obtain a number of bins. Let us replace summation
integration and write

Z~n!$lT ,lS ;q%5E dgr~g!@v~n!S~n!#2 f ~g!1gq, ~4.2!

where the density of the space-time bins is introduced:

dN~n!~g!5dgr~g!@v~n!S~n!#2 f ~g!. ~4.3!

The function f (g) is a spectral function of the space-tim
dimensionlike characteristics, or simply, dimensions. T
distribution densityr~g! is a slow function ofg. To be more
accurate, we should assume that the bin probab
v (n)S(n) also depends ong because for different island se
the bins have different structures. Nevertheless, the de
dence ofv (n)S(n) on g is slow in comparison to the expo
nential low in Eq.~4.3!.

Using Eqs.~3.5! and ~3.10! transforms Eq.~4.2! into

Z~n!$lT ,lS ;q%5E dgr~g!exp$2n@gq2 f ~g!#

3~ u ln lSu1 ln lT!%, ~4.4!

where lS and lT are slow functions ofg. For n→` the
standard steepest descent procedure gives

Z~n!$lT ,lS ;q%;exp$2n@g0q2 f ~g0!#~ u lnlSu1 lnlT!%,
~4.5!

with the equation to determineg05g0(q,lS ,lT),

q5 f 8~g0!. ~4.6!
l
e
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From another side recall that, forq50, expression~4.1! de-
finesZdiscr

(n) $lT ,lS ;0% as a number of bins. For the one-sca
situation we have this number from Eq.~3.8! aslg

n . For the
multifractal case we can write a power oflg

n by introducing
a generalized dimensionDq , in analogy to@39,1–4#

Z~n!$lS ,lT ;q%;lg
2n~q21!Dq;exp$2n~ ln lg!~q21!Dq%.

~4.7!

The scaling parameterlg defines a coefficient of prolifera
tion of space-time bins, and we can consider

lg5lg~lT ,lS!, ~4.8!

i.e., that we consider dynamical systems with only two ind
pendent scaling parameters.

A comparison of Eqs.~4.7! and ~4.5! gives

~q21!Dq lnlg5@g0q2 f ~g0!#~ lnlT1u lnlSu!. ~4.9!

For some limit cases,lg in Eq. ~4.8! should satisfy the con-
ditions

lg5 H lS
21

lT

if lT51
if lS51. ~4.10!

For a general situation,lg ,lT ,lSÞ1, and we can rewrite
Eq. ~4.9! in the final form

~q21!Dq5
lnlT

lnlg
~11m!@g0q2 f ~g0!#, ~4.11!

where the parameter

m5u lnlSu/ lnlT ~4.12!

is introduced in@15–18#, and called the transport expone
~see~2.10!!.

It follows from Eq. ~4.11! that, forq50,

D05
lnlT

lnlg
~11m! f ~g0!, ~4.13!

i.e., there is now no simple connection between the dim
sionD0 and the spectral function. The regular formula

D05 f ~g0! ~4.14!

appears only in the cases~4.10! when one has a multifracta
structure only in space or time. Forq51, using Eqs.~4.6!
and ~4.11!, we obtain

D15g0~1!
lnlT

lnlg
~11m!, ~4.15!

where the valueg0(1)5g0(q51) can be obtained from Eq
~4.6!: f 8@g0(q51)#51.

In Eq. ~4.9! we expressed the generalized dimensionDq
through the spectral functionf (g) as in@1–4#. Nevertheless
formulas ~4.9!, ~4.11!, ~4.13!, and ~4.15! show that the
knowledge of the spectral function is not sufficient for
typical dynamical system, and some additional informat
is necessary about the system’s structure in space and
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A simplification can be used for the webmap~2.1!, where
lg5lT @17,18# but it can be a case whenlgÞlT for the
standard map~2.2! @18,40#.

V. CRITICAL EXPONENT
FOR THE POINCARÉ RECURRENCES

Consider again the partitioning introduced in Sec. III~see
Fig. 1! and recurrences of escapes from a boundary isl
layer of thenth generation. When normalized to the unit
the probability~3.11! to occupy a bin by a particle, the co
responding ‘‘number of states’’ can be written in the form

Zr
~n!5 (

i1 ,...,i n

1

Si
~n!v i

~n! 5 (
i1 ,...,i n

~lT /lS!
n. ~5.1!

Instead of Eq.~5.1!, consider a more general expression

Zr
~n!~q!5 (

i1 ,...,i n

1

Si
~n!@v i

~n!#q
5 (

i1 ,...,i n
lT
nq/lS

2n. ~5.2!

Using Eq.~3.8!, we have the estimation

Zr
~n!~q!;exp$n~q ln lT1u lnlSu1 lnlg!%. ~5.3!

The expression can be simplified if we consider the c
lg5lT @17,18# when the proliferation coefficient for th
number of islands coincides with the coefficient of the
crease in the circulating period around the islands. Then

Zr
~n!~q!;exp$n@~q11!lnlT1u lnlSu#%. ~5.4!

This expression is finite if

q<qc52~ u lnlSu1 lnlT!/ lnlT52~11m!. ~5.5!

The obtained result has a remarkable interpretation.
From definition ~5.2! we can considerZr

(n)(q) as time
moments of orderq for the escape or recurrence sum of t
statesZr

(n) . It is finite only if uqu<uqcu. That means that the
probability density for recurrences@see Eq.~2.7!# should
possess the asymptotics

P~ t !;t211qc5t212~11m!5t222m ~5.6!

in order to have finite moments of orderq.0. Result~5.6!
coincides with the expressions~2.11! and ~2.7! derived in
@18# from different consideration.
d

e

-

VI. TWO-ISLAND-SET MODEL

Consider a case when the hierarchy of islands can be
resented by two independent sets of islands with two co
sponding pairs of scaling coefficients: (lS

(1) ,lT
(1)) and

(lS
(2) ,lT

(2)). We consider a simplified version

lT
~1!5g~n!, lT

~2!5g~2!, ~6.1!

whereg(1) andg(2) represent the proliferation of island num
bers for the first and second sets, correspondingly. In ana
to Eq. ~3.3! let us label an island of thenth generation as
follows

ui
~n!5u~ i 1 ,i 2 ,...,i n!, ~1< i j<g~1!1g~2!,; j ! ~6.2!

and

lT~ i j !5H lT
~1! , 1< i j<g~1!

lT
~2! , g~1!11< i j<g~1!1g~2!,

~6.3!

lS~ i j !5H lS
~1! , 1< i j<g~1!

lS
~2! , g~1!11< i j<g~1!1g2.

~6.4!

Continuing the analogy to the simple-set island model,
us write an expression similar to Eq.~5.2! for the number of
states’ moments:

Zr
~n!~q!5 (

i1 ,i2 ,...,i n
)
j51

n

lT
q~ i j !/lS~ i j !. ~6.5!

We can use the expression

Zr
~n!~q,g!5 (

i1 ,...,i n
expS (

j51

n

q lnlT~ i j !2 lnlT~ i j !D e2gn

~6.6!

to define the dimension spectral functiong5gc(q) as a criti-
cal value ofg for which the sum~6.6! converges. This value
can be expressed as

gc~q!5 lnn~q!, ~6.7!

where n(q) is the maximal eigenvalue of the matri
A5C•C(q) @41# with



d
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FIG. 2. Island hierarchies for the standard map with parameter value~7.1!: ~a! The main island and first generation of a three-islan
chain.~b! Magnification of the right island in~a!. ~c! Magnification of the left island in~b!. ~d! Magnification of the bottom island in~c!.
for
andB if the (m11m2)3(m11m2) matrix consists of only
units. The straightforward calculation gives

n~q!5~lT
~1!!q11/lS

~1!1~lT
~2!!q11/lS

~2! . ~6.8!

Hence, from Eqs.~6.7! and ~6.8!,

gc~q!5 ln@lT
~1!!q11/lS

~1!1~lT
~2!!q11/lS

~2!]. ~6.9!

Particularly for the caseslT
(1)5lT

(2)5lT and lS
(1)5lS

(2)

52lS , we arrive at the result
gc~q!5u lnlSu1~q11!lnlT5q lnlT1~11m!lnlT .

~6.10!

From Eq. ~6.10! one can find a critical valueqc from the
conditiongc(qc)50, i.e.,qc52(11m), in correspondence
with Eq. ~5.5!.

For the cases of slightly different scaling parameters
two sets of islands,

lS
~1!52lS , lS

~2!52~lS1dlS!

lT
~1!5lT , lT

~2!5lT1dlT ~6.11!
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anddlS!lS , dlT!lT , it is easy to obtain, from Eq.~6.9!,

g~q!'2 ln~lS1dlS/2!1~q11!ln~lT1dlT/2!.
~6.12!

As the critical value of qc satisfies the condition
gc(qc)50, we can obtainqc using Eqs.~6.9! or ~6.8! with
the condition

~lT
~1!!q11/lS

~1!1~lT
~2!!q11/lS

~2!51, ~6.13!

or, for the case Eq.~6.11!,

qc'212u ln~lS1dlS/2!u/ ln~lT1dlT!. ~6.14!

Equation~6.13! looks similar to the Moran equation for th
Hausdorff dimension of some fractal sets@42#, but with ad-
ditional weightslT

(1)/lS
(1) andlT

(2)/lS
(2) .

In fact, formula~6.13! can be easily generalized to obta
critical exponentsqc for the multifractal situation

(
j

~lS
~ j !!q11/lT

~ j !51. ~6.15!

The best way to obtain Eq.~6.15! is by induction using the
additive form ~6.13!. The corresponding generalization
Eq. ~6.9! will be

gc~q!5 ln (
j

~lS
~ j !!q11/lT

~ j ! . ~6.16!

We should remember that the multiple island set conside
here is only a possible situation. Different variants of how
build a multifractal for a multi-island set depends on t
resonance structures of the system.

VII. NUMERICAL ANALYSIS

It is well known that the phase space of a typical Ham
tonian system with chaotic dynamics is a ‘‘zoo’’ of island
They have a different nature, a different evolution with
spect to change of parameters, and a different structure.
tually, we never have special kinds of islands, but always
infinite set of different island species. To demonstrate
existence of at least two scaling parameters (lS ,lT) one
should find a special value~s! of the control parameter and
specific set of islands with stickiness and proliferation p
rameter lg . Such an example, with some variations
(lS ,lT ,lg), was demonstrated in@14# for an advection
problem in the hexagonal helical flow. It is important to s
an exact~or almost exact! self-similarity without variations
of (lS ,lT ,lg) along the island set in order to clarify th
existence of the corresponding fractal structure of the
namics in the islands’ boundary layers. Then, by a sm
variation of a parameter, one can create a multifractal si
tion. In particular, the existence of the fractal situation w
demonstrated in@17,18# for the web map, and in@18,40# for
the standard map. Below we provide a similar example
the standard map~2.2!.

In Fig. 2~a!, we see the structure of four islands with th
central one- and three-island resonance sets around the
tral island. The three-island set occurred as a result o
bifurcation when the three islands separated from the cen
d
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one after the parameterK exceeded some critical value. If w
continue to increaseK, a similar structure of subislands oc
curs for the three satellite islands of the first generation
Fig. 2~b!, we show a magnification of the right island of th
first generation. There is eight-island chain around it. O
can find such a value ofK, namely,

K856.908 745; ~7.1!

thus the proliferation number of islands is constant:lg58.
Figures 2~c! and 2~d! show the next two generations of th
eight-island chain. We can continue this demonstration
least for three more generations for the same value ofK8 .

With the structure obtained, we can calculate the ar
and the last invariant curve periods for islands of differe
generations. These data are presented below:

lnlT'2.1, u lnlSu'2.5. ~7.2!

Values ~7.2! can be used to find the parameterm in Eq.
~4.12!

m5u lnlSu/ lnlT51.2, ~7.3!

i.e., a so-called transport exponent@see Eq.~2.10!#. Now the
valuem can be compared with what we can obtain indep

FIG. 3. Distribution function of the Poincare´ cycles for the stan-
dard map case indicated in Fig. 2:~a! log10 P vs t plot; ~b!
log10 P vs log10 t plot for the tail.
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dently by analyzing the Poincare´ cycles distribution and ap
plying formulas~2.11!. Numerical results were obtained fo
the same parameterK Eq. ~7.1!, to obtain the Poincare´ cycles
distribution. They were collected from 5.53105 initial con-
ditions each run 106 iterations. Figure 3~a! displays the Pois-
sonian law for the recurrence time,1.53104 steps, and then
a crossover to a long powerlike tail. The analysis of the
@Fig. 3~b!# gives its slopeg53.260.2. This result, in com-
bination with Eq.~7.3!, shows that the formulas~2.11! works
perfectly. From another side, due to Eq.~4.12!,

g521m521u lnlSu/ lnlT , ~7.4!

and this means that computations confirm nontrivial dep
dence of the exponentg of the Poincare´ cycles distribution
on the space and time fractal properties simultaneously.

VIII. CONCLUSION

In dealing with Hamiltonian chaotic dynamics, we met
situation in which the~multi-! fractal properties of motion
are revealed in both phase space and time. This happ
because of the presence of highly complex islands struct
and the stickiness of their boundaries. At the moment, we
not familiar with a possibility to extend such a property
chaotic dynamics to dissipative systems or to those w
more degrees of freedom. Nevertheless one can expect
the same kind of space-time~multi-! fractality is a typical
property of the dynamical chaos that can be applied to m
sophisticated problems such as turbulent flow.

With some simplification one can say that our generali
tion considers a fractal support characterized by a mult
mensional space of variableslg , lS , andlT . It is possible
to add here the scaling parameter for Lyapunov expon
ls . It seems that, for simplified models, such as the stand
map or web map, two scaling parameters, saylS andlT , are
sufficient, becauselg can be expressed throughlT , and
ls should coincide withlT . This restriction was discusse
in @14,15# in more details. For some cases, i.e., special set
f

n
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ed
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re

h
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re

-
i-

ts
rd

of

islands, we even expect the existence of a connection
tweenlT andlS . Nevertheless such a connection cannot
imagined for a general situation, and a scheme for the p
liferation of islands can be too complicated and nonuniv
sial to allow reducing the structure of the fractal support
chaotic dynamics to a single scaling parameter. It seems
sonable that one scaling parameter case occurs only a
approximation when all others are close to 1, and that
fractal situation occurs only as a narrow multifractal spe
trum case.

A similar consideration can be extended to the spec
function of dimensions. How many independent spec
functions should define the multifractal description of ch
otic dynamics, and particularly the exit time and Poinca´
recurrences distribution? It is known that Lyapunov exp
nents characterize an intrinsic property of chaotic dynam
related to the local instability increment. It comes very na
rally to introduce a spectral dimension function for th
Lyapunov exponents@43,44#. In fact, it can be sufficient to
describe the fractal properties of the system if no more t
one scaling parameter or scaling spectral function is ne
sary for the description. Our generalization is introduced
the cases when only one function of two scaling parame
is necessary, and this is precisely the case for the distribu
of Poincare´ recurrences when the characteristic expon
~2.1.11! involves two scaling parameters for Hamiltonian d
namics. One can assume more sophisticated cases that r
the so-called ‘‘strange’’ or fractional kinetics@45,15# which
is induced by dynamical chaos.
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