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Fractal and multifractal properties of exit times and Poincare recurrences
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Systems with chaotic dynamics possess anomalous statistical properties, and their trajectories do not corre-
spond to the Gaussian process. This property imposes description of such time characteristics as the distribu-
tion of exit times or Poincareecurrences by introducing @ulti-) fractal time scale in order to satisfy the
observed powerlike tails of the distributions. We introduce a corresponding phase-space-time partitioning and
spectral function for dimensions, and make a connection between dimensions and transport exponent that
defines the anomalou§strange”) kinetics.[S1063-651X97)15405-§

PACS numbd(s): 05.45+b

[. INTRODUCTION tifractal construction of the trajectories rather than to a frac-
tal one.
After a set of pioneering publicatiorjd—4], fractal and A description of the multifractal time and the correspond-

multifractal analyses of the dynamical systems became rodng spectral function of dimensions is the subject of this

tine methods for the diagnostics of chaos. A rigorous definiwork. For a general situation of chaotic dynamics, the fractal
tion of fractals, or more accurately, a dimensionlike characiime cannot be introduced without considering a space struc-
teristics, was considered [i5], where the so-called Pesin’s ture. qu that reason, the .space—t|me couplmg is nontrivial,
dimension was introduced as a generalization of the Garaté@nd S is the spectral function of the fractal indices. In Sec. Il

odory dimension(6]. Later it was shown if7,8] that the & l;mefl_y descrl_be the necessary cha}racterlstlcs of the
intuitively introduced multifractal description of dimension Hamiltonian chaotic dynamics, with a particular emphasis on

properties and the famot§a) spectrum for dimensions can the Pomcar_erecurrences and exit time dlstr|but|0ns_. In Sec.
: . : Il we consider fractal space-time structures, and in Sec. IV
also be defined in a rigorous way. .
o . . . multifractal ones.
The peculiarity of(multi-) fractal analysis of dynamical
systems, as compared to static geometric objects, is that there
exists a theoretical possibility to obtain all necessary infor- !l SCALING PROPERTIES OF TRAJECTORIES
mation from a single trajectory. In fact, one would like to AND ASYMPTOTIC DYNAMICS

explain the(multi-) fractal properties of a trajectory that fills  pjstribution function for trajectories in phase space can be
the phase space and has a very complicated distribution @hjrly uniform, as happened, for example, in the “Arnold
the occupation time for different phase space domains. Thergat” system. Nevertheless, a typical Hamiltonian system has
are many fractal objects in the phase space of a chaotic sya-rich set of islands in phase space, with a regular dynamics
tem. Let us mention only such objects as cantori and islandgnside the islands and with narrow stochastic layers isolated
around-islands(see review[9]). Recently the kinetics of from the main stochastic sea domain. As an example, one
Hamiltonian chaotic systems has been considered to be fracan consider the web map

tal in space and time simultaneously. The popular notion of

fractals[10] can be extended, and a fractal time introduced u=v, v=-u—K siw (2.1
for the random processes of \netype applied to different
kinds of system$11-13. or the standard map
For Hamiltonian systems with chaotic dynamics, the mo- L L
tion is not ergodic in the full phase space, and one needs to p=p—K sinx, x=x+p, (2.2

extract a(multi) fractal set of islands to obtain a domain with

ergodic trajectories. The islands are a singular part of thevith a fairly well known island structure which will be dis-
phase space. The behavior of the trajectories near an islamtissed more below. The dynamics near the islands boundary
boundary layer was studied {14-1§ as a fractal object is singular due to the phenomena of stickiness, and it can
which imposes powerwise distributions in the large time asdominate in the large time asymptotics. This circumstance
ymptotics of chaotic kinetics. More specifically, the island influences almost all important probability distributions such
boundary is sticky, the subisland boundary is more stickyas the distribution of distances, exit times, recurrences, mo-
and so on. As a result of the situation described, fractaments, etc. The main feature of all such distributions is that
space-time properties of the trajectories were considered. Wibey do not correspond to either Gaussian or Poissaiian
encounter a situation in whicti) fractal properties exist si- similar) processes with all finite moments. This is due to the
multaneously in space and time, afid the multiplicity of  presence of powerlike tails in the asymptotical limits of large
the resonance sets that generate islands is adequate to a nmapace-time scales.
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Being more specific, one can say that power-wise tailedvith the transport exponeni+ 1. It is worthwhile to men-
distributions are a consequence ofnaulti-) fractal singular  tion the results for the anomalous statistical properties and
scattering zone near the island boundaries. More preciselyheir correlation with either the Poincarecurrences or es-
there are different sets of islands with different asymptoticape time distributions for the standard m&8—31] and for
(different powers of distribution tailand different scales for the Lorenz gagSinai billiard) with infinite horizon[32-37.
where and when the asymptotics work. Different intermedi-In [17,18 and[38], different approaches were proposed to
ate asymptotics is a crucial characteristic of the anomalousonsider Poincareecurrences by introducing a dimension-
transport, as was mentioned in the problem of advectiotike characteristic or, in other words, by using a fractal de-
[19], and the problem of charged particle motion in an elec-scription of the recurrence times as a random(2e3). Par-
tromagnetic field[20]. This is the basis for introducing a ticularly, it was found in[18] that there exists a connection
multifractal description of some distributions in chaotic dy- between the recurrence times exponegi Eq. (2.7) and the
namics. transport exponent in Eqg. (2.10, namely,

As an example, let us consider an elemé&htof the finite
phase volumd™ in which the full area of stochastic motion (2.1

(stochastic seais located. The system is Hamiltonian and which is inferred by a specific phase space topology of maps
the dynamics is area preserving. Introduce a set of time |n(-2.1) and (2.2). Connection(2.11) was confirmed by high

y=2+pu,

stants{t;} when a trajectory crosses the boundaryAdf on
the way from insideAl” to outside. The intervals

={tjs1—t}, J=0,1,... 2.3

are Poincareycles. Their distributiorP(7,AT") can be nor-
malized as

1 “ . —
AT jo P(7;AT")dr=1, (2.9

and the limit

P(7)= lim P(r;AT)/AT
AT'—0

(2.9

exists if there exists ergodicith21] and phase space com-
pactness. Moreover, if the measure of the chaotic orbits is

nonzero, then

(Ty=To< 00, (2.6
i.e., the mean recurrence time is fin[2l] (see alsd22)).
Using the results of21] and the expansion forfR2] it is
possible to showW23] that in the asymptotic formula
P(r)~77, (2.7)

T— 0
there exists a restriction

y>2. (2.9

The chaotic dynamics can be considered as a normal one

if the Poissonian distribution

P(7)= i exp( — 7/{7))

) (2.9

or any similar distribution with all finite moments is valid.

Such a situation was described[24—-27.

It was mentioned in26] that the anomalous behavior

accuracy simulation if17,18,39. These results encouraged
us to consider the fractal structure of islands in the phase
space as a seed of fractal and multifractal structures of recur-
rence times. We can add to the consideration distribution of
the escape times from different boundary layer zdi&slg

by introducing a time delay distribution. Leéi(t;AT") be the
probability density to escape frodl" during the time inter-

val (t,t+dt). Then the probability to escape froft" for the

time not less than is

Pe(t;AF)zftdr (T AT). (2.12
0

The corresponding survivial probability for the tinhés

W(t;AT)=1—Pg(t;Al')=1— ftdr (AL,
0

(2.13
with the normalization condition
Po(t—o;Al")=1. (2.19
The mean time of trapping to the domald’ is
ts(AF)zf dr ry(7;AT). (2.19
0

In the case where there is only one “leading” exponent in
Eqg. (2.7), we can assume that the same has happened with
the escape distribution functiop( ;AT i.e.,
(AT ~777, (2.19
and then, in correspondence with Eg8.11) and the condi-
tion u>0, we obtain restrictiori2.8). The one-exponer(or
fracta) situation is not sufficient to describe a typical situa-
tion, and in the following sections we reconsider it using a
more solid basis.

lll. FRACTAL SPACE-TIME PARTITIONING

(2.7) correlates with the anomalous transport situation when

the moments of the displacemdr{t) satisfy the asymptotic

equation

(RA(t))~tH",  t—oo, (2.10

Consider the space-time partitioning that was introduced
in [15] (see alsd18]) and resembles the Sierpinsky carpet
(Fig. 1). Let the central square be an island of zero genera-
tion. Surround the island by an annulus which represents the
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whereS(" is area of an island("™ and T{") is introduced in

Eq. (3.4). Expressions in E(3.5) correspond to equal areas
and residence times for all islands of the same generation.
Two scaling parametepsg and\  represent the existence of
the exact self-similarity in space and time correspondingly.
Precisely such a situation was describefllia—18 for maps
(2.1 and(2.2), with

Ne<1, A>1. (3.6

In addition to EQ.(3.5), there is a self-similarity in the is-
lands’ proliferation, i.e.,

On=Aglo, Ag=3 (3.7
It follows from Egs.(3.2) and(3.7) that
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Np=X\go=A\] (3.9

if we start from the only islandgy=1). It is useful to in-
® ® @ troduce a “residence frequency”
FIG. 1. Scheme of the phase space for islands surrounded by wi(n)zln—i(n) (3.9
subislands.

with the self-similarity property

boundary island layer. It consists ¢f (g;=8 in Fig. 1)
subislands of the first generatiddashed small islands in
Fig. 1). We can partition the annulus lgy domains, so that . T . :
each of them includes exactly one island of the first generat—. Co(r;si()jezsng)w ihp?hrtlthnln?flw ht'.Ch (%o%esTr;]ondti tlo colndl-
tion; then we surround each of the first generation islands béons ) —(2.4 W € simpiification(.s. 7). Thentn leve

wi(n)=w(n)=)\{nw(0). (3.10

an annulus of the second generation and repeat the proce ‘I‘_the partitioning corresponds to théh level of the islands

On thenth step the structure can be described by a “word” Nierarchy, i.e., éach space bin has an _éii@band a cojoint
residence timeT(" [both are defined in Eq(3.5)] whose

Wr=W(Q1,92,..-.9n)- (3.1 sizes do not depend dn The elementary probability for a
bin to spend tim& (™ in the domairS!™ can be presented in
The full number of islands on theth step is a simple form
Nn=01.--On, (32 PIV=P; i,..i,=Ca0{"S"”, Vlsij=g, (312

and any island from thath generation can be labeled by  where C,, is a normalization constant. Let us caf™ an
- o ) _ ) elementary bin probability. Using Eg&8.5), (3.6), and(3.9),
Ui =u(iq,iz,....ip), 1sij=<g;, Vj. (3.3 we can rewrite Eq(3.11) as

Let us now introduce the time that a particle spends in the pi<n>: C,(As/AD)",  Vi. (3.12
boundary layer of an island. This time,
With expression(3.12, we can consider different sums

TW=T(u"), (3.4  and partition functions. As an example, consider the sum
carries all information of theath generation island3.1)— M _ _
(3.3). By introducing a residence time for each island bound- il;y . P _Cnilz,in exi —n(|Inkg| +Ink1)]

ary layer, we have a situation comparing to the plain Sier-
pinsky carpet or plain fractal situation because of the D
nontriviality of the space-time coupling. In fact, we are at-
taching an additional parameter responsible for the temporal
behavior to the simple geometric construction which is simi- 313
lar to a Cantor set.

A simplified situation corresponds to the exact self-
similarity of the construction described above, i.e.,

exd —n(|In\g/+In\1) +ne,]1=1,

where the “free energy” density

1
Yn=1InC,. (3.19
SM=sM=)\289, vi,

(0 1)+ () _ is introduced. The number of terms in E.13 follows
TV=TW=\T?, Vi, (3.9  from Eq.(3.8), and therefore in the limih—c we obtain
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lim ¢, = =[In\g| +INX 1= InN,. (3.15  From another side recall that, for=0, expressiori4.1) de-
N finesZ{).{\1,\s;0} as a number of bins. For the one-scale
situation we have this number from E®.8) as)\g. For the
multifractal case we can write a power)og by introducing

a generalized dimensidR,, in analogy t{39,1-4

A more precise formulation of resul8.15 is that the sum in
Eq. (3.13 diverges if,> ¢, converges to zero ify, <,
and converges to 1 if,= .
ZM s hriab~n g P~ exg —n(In Ag)(q—1)Dg}.
IV. MULTIFRACTAL SPACE-TIME a.7

AND ITS DIMENSION SPECTRUM

) . ) . The scaling parametex, defines a coefficient of prolifera-
It was mentioned in Secs. | and Il that chaotic dynamicakjgy of space-time bins, and we can consider

systems with rich sets of islands have a multifractal structure

rather than fractal space-time structure. Our purpose now is Ag=Ng(AT,\g), 4.9
to introduce a spectral function of dimensions in analogy to
[1-4]. i.e., that we consider dynamical systems with only two inde-
Following a usual method of statistical mechanics, let ugpendent scaling parameters.
introduce a partition function in the form A comparison of Eqs(4.7) and (4.5 gives
(q—=1)Dgy InNg=[ v0q9—f(yo) J(INA1+|InNg]). (4.9
Z@R AT Asia= 2 (ef"S™) (4.0 TR s
11200 For some limit cases\ 4 in Eq. (4.8) should satisfy the con-
Here we use the space-time bin probabiligf”’S{"™ intro- ditions
duced in Eq(3.11). Considering a multiscaling situation, we At i A=1
assume that a real elementary probability to occupy a bin Ng= N if he=1 (4.10
T S .

should have the same scaling dependence as if3Ef) up

to a power ofy, and that there are different valuesypin the  For a general situationy 4, A1, As#1, and we can rewrite
sum. With an exponerg we can consider different moments Eq. (4.9) in the final form

of the elementary bin probability. In particular, fge=0, we

simply obtain a number of bins. Let us replace summation by In\
integration and write (- 1)Dq:_|n)\ (I+wlyoa—f(yo)], (411
g

Z(n){)\T,)\S;q}=jdyp(y)[w(n)S(n)]_f("qu, 4.2 where the parameter

,U/:“n)\svln)\'r (413

where the density of the space-time bins is introduced: L .
y P is introduced in[15-18, and called the transport exponent

dN™(y)=d wMsM=f() 43 (see(2.10).
(v =dve(yl ! 43 It follows from Eg. (4.1]) that, forq=0,

The functionf(y) is a spectral function of the space-time I
dimensionlike characteristics, or simply, dimensions. The Do=—— (14 1) f(y0), (4.13
distribution densityp(y) is a slow function ofy. To be more I\
accurate, we should assume that the bin probability ) ] ) ]
»MSM also depends ory because for different island sets € there is now no simple connection between the dimen-
the bins have different structures. Nevertheless, the depesion Do and the spectral function. The regular formula
dence ofw™S™ on vy is slow in comparison to the expo-

" y P P Do=1(70) (4.14

nential low in Eq.(4.3).
Using Egs.(3.5) and(3.10 transforms Eq(4.2) into appears only in the casé$.10 when one has a multifractal
structure only in space or time. Fgr=1, using Eqs(4.6)

ZM{\r Asia}= f dyp(y)exp{—n[ya—f(7)] and(4.11), we obtain

X([In g0 Ao}, @ D1= 7o) o (L4 1), (4.19
[¢]

where Ag and A1 are slow functions ofy. For n—« the

standard steepest descent procedure gives where the valueyo(1)= yo(q=1) can be obtained from Eg.

(4.6): f’[}(/o(g)=1)]=1. - ed 4
(n) cql~ _ _ + In Eq. (4.9 we expressed the generalized dimen
27y hsiQ~exp—n[yo0~ f( 7o) ]([Inks Im\T)(i{_g;) through the spectral functiof(y) as in[1-4]. Neverthslrggs
formulas (4.9, (4.11), (4.13, and (4.15 show that the
with the equation to determingy= yo(q,\s,\7), knowledge of the spectral function is not sufficient for a
typical dynamical system, and some additional information
g="f"(yo). (4.6) is necessary about the system’s structure in space and time.
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A simplification can be used for the webmé&p.1), where VI. TWO-ISLAND-SET MODEL
Ng=\7 [17,18 but it can be a case whexy# A for the

standard magi2.2) [18,40). Consider a case when the hierarchy of islands can be rep-

resented by two independent sets of islands with two corre-
sponding pairs of scaling coefficients?\(st) ,)\(Tl)) and

V. CRITICAL EXPONENT (A& \?)y. We consider a simplified version

FOR THE POINCARE RECURRENCES D ) )
. . o . ANP=g", AP=g"?, (6.2)
Consider again the partitioning introduced in Sec(ske

Fig. 1) and recurrences of escapes from a boundary island
layer of thenth generation. When normalized to the unit of
the probability(3.11) to occupy a bin by a particle, the cor-
responding “number of states” can be written in the form

whereg™® andg(® represent the proliferation of island num-
bers for the first and second sets, correspondingly. In analogy
to Eq. (3.3 let us label an island of thath generation as

follows
1 - . . .
ZV=3 = 2 (g™ (5. uV=u(igiz,...in), (1<ij<=g®+g@.Vj) (6.2
i1,...0p 3 [OH 1,00
Instead of Eq(5.1), consider a more general expression and

N AP, 1sij<g® .
Z(rn)(q):ilzyi W . E A9 (5.2 (i) = A2, gV+1=i=gP+g?, (6.3

Using Eq.(3.8), we have the estimation Y 1<i<g?

. T

Ag(ij)= 6.4
) {)\(S”, gV+1<ij=gP+g% 64

Z"M(q)~expin(q In Ar+|Inkg +Inkg)}. (5.3

The expression can be simplified if we consider the case Continuing the analogy to the simple-set island model, let
Ng=M\7 [17,18 when the proliferation coefficient for the US write an expression similar to E.2) for the number of
number of islands coincides with the coefficient of the in-States’ moments:

crease in the circulating period around the islands. Then

Z(q)~expin[(q+ 1)Img+[IMg 1. (5.4 AL CIEIDY HA (Ij)/Ns(i) (6.5

i1.i.in =

This expression is finite if .
We can use the expression

g<gc=—(|/In\g/+InAp)/In\y=—=(1+u). (5.5

(n) = i)— i -y
The obtained result has a remarkable interpretation. Z(A.)= Ein exp( ;1 g Ink+(ij) —Inh-(i) e

From definition (5.2 we can considez{"(q) as time (6.6
moments of ordeq for the escape or recurrence sum of the

StateSZ_Er_w) . Itis finite only if |q[<|qc|. That means that the to define the dimension spectral functigr: y(q) as a criti-
probability density for recurrencelsee Eq.(2.7)] should  cal value ofy for which the sum(6.6) converges. This value
possess the asymptotics can be expressed as

PO~CHR=r =t @8 Y@ =Inu(q) 6.7

in order to have finite moments of ordgr0. Result(5.6)
coincides with the expression®.11) and (2.7) derived in  where v(q) is the maximal eigenvalue of the matrix
[18] from different consideration. A=C-C(q) [41] with

C(q)=diag(AF)IAY .., AP, (WY NE . (W) E)

OYING L OEYIND AP L NN
A= (ml+m2) s
AFYUNG NN NI L NPYING)
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FIG. 2. Island hierarchies for the standard map with parameter W@ldg (a) The main island and first generation of a three-island
chain. (b) Magnification of the right island ifia). (c) Magnification of the left island irib). (d) Magnification of the bottom island ifc).

ve(@)=|IN\g| +(gq+ 1)IN\r=q In\ 7+ (1+ w)In\+.
(6.10

and B if the (m;+m,) X (m;+m,) matrix consists of only
units. The straightforward calculation gives

From Eg.(6.10 one can find a critical valug, from the

v(q)= (NI + (NPT IND. (6.9
(@)= s HOA S condition y.(q.) =0, i.e.,q.= —(1+ ), in correspondence

with Eq. (5.5).

Hence, from Eqs(6.7) and(6.8), For the cases of slightly different scaling parameters for
two sets of islands,

Ye(@=IAP)TFIND +AP)+ 1\ 2]. (6.9
AP =2Ng, AP =2(\g+Ng)
Particularly for the caseaM=A@=x; and \P=\?
wo 5 AY=Ar, NP =Ar+ong (6.12)

=2\g, We arrive at the result
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and o\ g<\g, OA7<<\7, it is easy to obtain, from Ed6.9), one after the paramet&r exceeded some critical value. If we
continue to increasK, a similar structure of subislands oc-

(@)~ —In(Ag+ SN g/2) + (q+ 1) In(A 1+ S\ 1/2). curs for the three satellite islands of the first generation. In
(6.12 Fig. 2(b), we show a magnification of the right island of the

first generation. There is eight-island chain around it. One

As the critical value of satisfies the condition -
9 can find such a value df, namely,

v:(g.) =0, we can obtairg. using Eqs.(6.9 or (6.8) with
the condition K8:6908 745; (71)
(Dya+17y (1) (2)ya+1/y (2) — . . . .
()TN + () TTING =1, €13 thus the proliferation number of islands is constany=8.
Figures Zc) and 2d) show the next two generations of the
eight-island chain. We can continue this demonstration at
ge~—1—|In(Ag+ S\ g/2)|/In(\1+ S\y). (6.14  least for three more generations for the same valuigof
With the structure obtained, we can calculate the areas
Equation(6.13 looks similar to the Moran equation for the and the last invariant curve periods for islands of different
Hausdorff dimension of some fractal sé#2], but with ad-  generations. These data are presented below:
ditional weightsh /A and AP/ @)
In fact, formula(6.13 can be easily generalized to obtain IN\7=~2.1, [Inkg[~2.5. (7.2
critical exponentsy, for the multifractal situation

or, for the case Eq6.1)),

Values (7.2) can be used to find the parameterin Eq.
_ _ 4.12
> (WD) P=1, (6.15

The best way to obtain Ed6.19 is by induction using the e, a so-called transport exponé¢see Eq(2.10]. Now the

addi(tive) f0f”fT1b(6-13)- The corresponding generalization of value u can be compared with what we can obtain indepen-
Eq. (6.9 will be

ye(@)=In X, (\Zar i, (6.16) A (a)
j
We should remember that the multiple island set considered TN
here is only a possible situation. Different variants of how to o
build a multifractal for a multi-island set depends on the W
resonance structures of the system. v
t%_s- ++
VII. NUMERICAL ANALYSIS = ol * J
It is well known that the phase space of a typical Hamil- b +m+“+*“*+~++ ]

tonian system with chaotic dynamics is a “zoo” of islands. T o e,
They have a different nature, a different evolution with re- -8r . ++f++**++++ﬁ+*++*+ +
spect to change of parameters, and a different structure. Ac- o . , . . . . Lt
tually, we never have special kinds of islands, but always an ° ' 2 s L ¢ R
infinite set of different island species. To demonstrate the
existence of at least two scaling parametexg,{t) one 65

should find a special valg® of the control parameter and a
specific set of islands with stickiness and proliferation pa-
rameter ;. Such an example, with some variations of
(As,A1.\g), was demonstrated iil4] for an advection
problem in the hexagonal helical flow. It is important to see sl
an exact(or almost exagtself-similarity without variations
of (As,A1,\g) along the island set in order to clarify the
existence of the corresponding fractal structure of the dy-
namics in the islands’ boundary layers. Then, by a small
variation of a parameter, one can create a multifractal situa-
tion. In particular, the existence of the fractal situation was B3
demonstrated if17,18 for the web map, and ifi18,4Q for "
the standard map. Below we provide a similar example for , ‘ . , ,
the standard ma(2.2). "33 44 45 “Blog ot 48 49

In Fig. 2(a), we see the structure of four islands with the
central one- and three-island resonance sets around the cen-FIG. 3. Distribution function of the Poincamycles for the stan-
tral island. The three-island set occurred as a result of dard map case indicated in Fig. 2a) log,o P vs t plot; (b)
bifurcation when the three islands separated from the centradg,, P vs log,, t plot for the tail.

logoP
|
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dently by analyzing the Poincamycles distribution and ap-
plying formulas(2.11). Numerical results were obtained for
the same paramet#r Eq.(7.1), to obtain the Poincareycles
distribution. They were collected from 5&L0° initial con-

islands, we even expect the existence of a connection be-
tween\t and\s. Nevertheless such a connection cannot be
imagined for a general situation, and a scheme for the pro-
liferation of islands can be too complicated and nonuniver-
ditions each run 19iterations. Figure @) displays the Pois- sial to allow reducing the structure of the fractal support of
sonian law for the recurrence tirmel.5x 10* steps, and then chaotic dynamics to a single scaling parameter. It seems rea-
a crossover to a long powerlike tail. The analysis of the tailsonable that one scaling parameter case occurs only as an
[Fig. 3(b)] gives its slopey=3.2+0.2. This result, in com- approximation when all others are close to 1, and that the
bination with Eq.(7.3), shows that the formula®.11) works  fractal situation occurs only as a narrow multifractal spec-
perfectly. From another side, due to E4.12), trum case.

A similar consideration can be extended to the spectral
function of dimensions. How many independent spectral
functions should define the multifractal description of cha-
otic dynamics, and particularly the exit time and Poincare
recurrences distribution? It is known that Lyapunov expo-
nents characterize an intrinsic property of chaotic dynamics
related to the local instability increment. It comes very natu-
Viil. CONCLUSION rally to introduce a spectral dimension function for the

In dealing with Hamiltonian chaotic dynamics, we met aLyapunov exponentf43,44. In fact, it can be sufficient to
situation in which the(multi-) fractal properties of motion descrlbe_the fractal properties _of the system if no more than
are revealed in both phase space and time. This happen&§€ Scaling parameter or scaling spectral function is neces-
because of the presence of highly complex islands structur&&Y for the description. Our ge_nerahzatlon is _mtroduced for
and the stickiness of their boundaries. At the moment, we ar'® cases when only one function of two scaling parameters
not familiar with a possibility to extend such a property of IS Nécessary, and this is precisely the case for_th_e distribution
chaotic dynamics to dissipative systems or to those wittff Poincarerecurrences when the characteristic exponent
more degrees of freedom. Nevertheless one can expect thig 113 involves two scaling parameters for Hamiltonian dy-
the same kind of space-timenulti-) fractality is a typical namics. One c“an assu,r,ne more_soph|s_t|ca_ted cases that reveal
property of the dynamical chaos that can be applied to morf€ So-called “strange” or fractional kineti¢g5,15 which
sophisticated problems such as turbulent flow. is induced by dynamical chaos.

With some simplification one can say that our generaliza-
tion considers a fractal support characterized by a multidi-
mensional space of variablag, As, and\ . It is possible
to add here the scaling parameter for Lyapunov exponents We would like to express our gratitude to Y. Pesin for
N\, . It seems that, for simplified models, such as the standardaluable discussions, and to M. Edelman for the help in pre-

and this means that computations confirm nontrivial depen
dence of the exponent of the Poincarecycles distribution
on the space and time fractal properties simultaneously.
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